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Effective Diffusion in a Stochastic 
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Analytical results are derived for the effective dispersion of a passive scalar in a 
stochastic velocity field evolving in a fast time scale. These results are favorably 
compared with direct computer simulation of stochastic differential equations 
containing multiplicative space-time correlated noise. 
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Dispersion of a passive scalar convected by a moving fluid is certainly a 
problem of major interest in chemical reactions, mixing of fluids, and 
spreading of pollutants. It is therefore of fundamental and practical impor- 
tance to understand how fluid flow affects dispersion. In particular, and 
since the pioneering work by Batchelor ~x) in the late 1950s, this question 
has been extensively examined in the context of turbulent flows, where the 
concept of an eddy diffusivity has been commonly invoked to describe the 
effectiveness of turbulent mixing. For homogeneous flows and nonreactive 
scalar one expects that such a turbulent diffusion will essentially depend on 
the statistical properties of the turbulence. 

Actually, the computation of an effective diffusion coefficient in terms 
of a turbulent velocity statistics is a problem with its own long history. 
Roberts ~2) applied the direct interaction approximation (DIA) for one- 
particle diffusion to get an expression for a turbulent diffusion coefficient 
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which has to be determined self-consistently using the solution of the scalar 
field itself. Kraichnan (3) confirmed numerically the consistency of that 
approach using a Lagrangian description appropriate to 2D and 3D 
prescriptions for the energy spectra of the turbulent field. This last author 
also applied the DIA formalism to evaluate the evolution of the spatial 
correlation function of the scalar field. (4) The abstract work by McLaughlin 
e ta l .  (5) proves in a formal and mathematical way the existence of an 
effective diffusion coefficient in turbulent media. The closure result obtained 
by Saffman (6) with average and truncation procedures has been recently 
generalized by Lipscombe e t a l .  (7) to account for Gaussian non- 
homogeneous velocity fields. 

Here we present a derivation of the effective diffusion coefficient which 
finally depends only on the properties of the stochastic isotropic, 
homogeneous, and stationary random velocity field, in the limit of small 
correlation times. To this end we will make use of non-Markovian 
techniques appropriate to deal with Langevin equations involving multi- 
plicative noise in spatially extended systems. Our predictions are favorably 
compared with direct computer simulations of a simple model performed 
using algorithms developed for stochastic partial differential equations, 
discretized in a lattice, and incorporating multiplicative space-time colored 
noise. 

Our starting point is an equation of motion for a scalar variable 
r t) in a turbulent velocity field v(x, t) 

~--~-~ = D V 2 ~  - V"  (u ( 1 ) 
0t 

D is the molecular diffusion coefficient. The velocity field is a 
homogeneous, stationary, and isotropic stochastic quantity defined by its 
cumulants. In particular, its mean value is zero and the second cumulant 
is given by (8) 

(vi(x, t) v j ( x ' ,  t ' )  ) = R i j ( x  - x'; t -  t') (2) 

Since v(x, t) is the velocity of an incompressible fluid, V-v = O, and as a 
consequencet9) 

~Rij 

Our interest here is to study the evolution of the mean value of the 
scalar field. Taking averages over the statistical distribution of v in Eq. (1), 
we get 

( 0 )  = D V 2 ( r  ~ (v,(x, t) 0(x, t ))  (4) 
Ot 
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Using now Novikov's theorem (m) to evaluate the last average, we obtain 

(v i (x , t )  O(x,t))=~',. dt' d x ' R o . ( X - X ' ; t - t ' ) \ r v j ( x , t ,  ) 
J 

(5) 

In deriving this last expression we have assumed that v is Gaussian. For a 
non-Gaussian field one should include higher-order cumulants in Eq. (5). 
In any case, Eq. (5) can be considered as a good approximation for a non- 
Gaussian v if higher-order cumulants are small enough in comparison with 
Rij. Let Ris be a rapidly decaying function in tol(t  - t'), not necessarily a 
delta function, on a time scale to which is a small quantity in comparison 
with other time scales of the system. In this circumstances we expand the 
response function in Eq. (5) around t' = t, 

r0(x,  t) r0(x,  tt) ) ,'=t • ri0(x, t)) ( t - t ' ) +  -.. (6) 
rvj(x', t') - rv s (x ' , -  -~ &' rvs(x', ,,=, 

Now the response function at equal times is evaluated from Eq. (1): 

tO(x, t) ,'= = _ - - 0  r ( x -  x') O(x, t) (7) 
rvj (x', t') t axj 

Substituting Eqs. (5)-(7) into Eq. (4) and after an integration by parts in 
the space coordinates and the use of Eq. (3), we obtain the equation of 
motion for the mean value 

c~ 0 2 
( 0 )  = DV2(~ ) + E  ~--'Z--~ JDij (~(  x, t ) )  + 0(to 2) & 7 ~x,wx s 

(8) 

where AD• is a new contribution to the molecular diffusivity D, which has 
the explicit expression 

AD~i = R~s (0; s) d s -  U~to6 o (9) 

where u2=R, (0 ;  0). Actually, this result can be considered as an exactly 
correct limiting case of Roberts' analysis (2) for the diffusion of a scalar field 
by a rapidly varying random velocity field. The correction is of order to, 

2 which we have discarded and the next contribution of Eq. (6) is of order to, 
in this approximation. ADij can be evaluated from an experimental or 
analytical knowledge of R,j. Nevertheless, we want to relate it to dispersion 
experiments, for example, of a small drop of a passive scalar in a turbulent 
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fluid. This can be done by considering that the field (~b) is like a probabil- 
ity density whose second moment, from Eq. (8), obeys (a) 

d 
dt Mij(t) = 2(D6~ + AD~) (10) 

where M~j is defined by 

Mij(t)= ( x i x j ) =  f dx xixj(~b(x, t) ) (11) 

Since the first moment is zero, we have for the relative fluctuations of 
the density 

( AxiAxj )  -= 2(D6 U + ADo) t (12) 

Dealing with isotropic turbulence, zlDii = ADjj = AD, then the modulus of 
the relative fluctuations in two dimensions is given by 

( Ar 2) = ( Ax 2) + ( Ay 2) = 4 ( D  + AD)  t (13) 

In an experiment or in a simulation one can look at (Ar 2) of the 
dispersed scalar and from its behavior in time one can obtain the effective 
diffusion 

/~o~_ (At2)  
4t (14) 

which should be compared with the theoretical prediction 

/)th = D + AD (15) 

In order to test our theoretical results, we have made computer 
simulations. We follow here a different approach from that of ref. 11, 
where the position of one Brownian particle is simulated. Here, instead, 
we simulate the stochastic partial differential equation (1) in a two- 
dimensional space. 

The simulation takes place in a square lattice of 64 x 64 points with 
shifted periodic boundary conditions (12) and space steps of Ax = Ay = 1. 
Then the two-dimensional lattice is treated as a one-dimensional array in 
the computing simulation, so that the updating can be easily vectorized. 

Our computer simulation of Eq. (1) has two main steps: first we 
construct a stochastic velocity field with prescribed properties, and then we 
simulate Eq. (1) by means of a first-order Euler algorithm. The first step 
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involves the simulation of a scalar field ~7(x, t), by means of the Langevin 
equation 

8~ 
_ 1 (1 - ;o2v ). + 

~t ~ 
16) 

taken in the above-mentioned lattice. ~(x, t) is a Gaussian white noise of 
correlation 

~x x' 
(~(x, t)~(x', t ' ) )  =2eA-~y6( t - t ' )  (17) 

We have here three parameters, the intensity of the noise e and the space 
and time correlation lengths 2 and r, respectively: These three independent 
parameters are conveniently related to the corresponding parameters which 
characterize the statistics of the turbulent field, i.e., its own intensity and 
space and time correlation lengths lo and to, respectively. Since Eq. (16) is 
linear, the scalar field r/is also a Gaussian process. Now the velocity field 
is constructed by means of the discrete version of the definition 

b'(x, t)=(v~(x, t), Vy(X, t ) ) = (  8__~q 8 , )  - @'~--~x ( 1 8 )  

which corresponds to an incompressible fluid. 
The algorithm for Eqs. (16) and (17) is 

_--At _ 2 2 V 2 ) t / / 2 z A t \  ~ij(t) (19) 
(l t-Tr-) 

where At is the time step integration, which is small enough to ensure the 
stability of the simulation results, V 2 is now the discrete version of the 
Laplacian operator, and ~u(t) are Gaussian independent random numbers 
of zero mean and variance equal to one. Now Eq. (18) is discretized as 

v~ rli'j-l(t)-rli'j+l(t)2 , q~+l,S(t)Ttli 1.j(t)) (20) 

The algorithm for the scalar field variable is now 

@u(t + At) = ~ij(t) + At DV2~(t )  - AtV-(b',j (t) ~o.(t)) (21) 

where we have used a symmetric form for the discrete gradient operator. 113) 
Then we proceed in the following way: we simulate q(x, t) during enough 
time to be sure that we are in an isotropic and homogeneous steady state. 



240 Careta e t  al.  

Once this has been accomplished, we start the simulation of Eq. (21) with 
the initial condition 

~(32, 32; 0) = 1 (22) 

~9(i, j; 0) = 0; i , j ~ 3 2  

Now under the influence of the molecular diffusion D and the velocity field, 
the scalar spreads over all the lattice. At different time intervals we measure 
the variance, Eq. (11), and from it we get/)err using Eq. (14). 

Actually some remarks are worth making in relation to the temporal 
evolution of the variance (Fig. 1). At the beginning the dispersed scalar 
needs a certain time to become effectively convected by the turbulent fluid. 
This gives rise to a transient behavior from an initial regime dominated 
by pure molecular diffusion to a later one where turbulent dispersion 
predominates. On the other hand, as time increases, finite-size effects begin 
to play a role and the dispersion of the passive scalar is bounded due to 
the periodic boundary conditions here prescribed. As a consequence, /)err 
would artificially decrease to zero. Between these two regimes, / ) ~  is 
evaluated along the flattest part of the time evolution of the variance. In 
Fig. 1 we also show for the sake of comparison the onset of the pure 
molecular diffusive regime when convection is totally absent. 

In Fig. 2 a log-log plot of AD = De~-  D versus u~ t o, this last quantity 
obtained through the simulation of the velocity field and using the rhs of 
Eq. (9), is presented for different values of the time scale to. The most 
important conclusion is that according to our theoretical predictions, the 
effective simulated diffusivity fits better the theoretical result as to decreases. 
On the other hand, an important remark is worth making concerning the 
discrepancies observed at larger values of to. Actually these deviations 

1 . 0 4  

Def t  
102  " - - - I - I - - I - I - ! ~ 1 - 1 ~  IP 41 1 -  IP t 1 ] - i -  I "  -~ - 

(Ar2) ~ AD 

1.00" m-  o- ~---o-o- o--~--e -o  - ~ " e - ~ ' ~ - e ' - I - i - u  ~ -  
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t 

Fig. 1. Time evolution of the dispersion (Ar2)/4t from direct numerical simulation of 
Eq. (21) with D =  1.0, ~= 10.0, ~=0.1, and ;t = 2.0 (B) .  Circles stand for the pure molecular 
diffusion regime. 
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�9 to = 0.1974 
| D to = o.~oi / �9 

-11 �9 ~= o o421 / �9 
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g , , , 

-4 -3 -2 -1 0 

Iog(u~) 

Fig. 2. A log-log plot of AD versus u~t o computed from direct numerical simulation of 
Eqs. (21) and (9), respectively, for different values of t 0. For all points, D= 1.0 and ~= 1.0. 
( A ) 2 = 1.0, ( ~ ) 2 = 2.0, ( �9 ) 2 = 3.0, ( �9 ) 2 = 4.0, and ( �9 ) 2 = 6.0. The three points for each 
symbol correspond to e = 5.0, 10.0, and 20.0, respectively. 

should  be cons idered  as somewha t  spur ious  since accord ing  to the way our  
results  have been p lo t t ed  in Fig. 2, the largest  values of  t o co r re spond  to the 
smal les t  values of 2, ac tua l ly  c o m p a r a b l e  to the pescr ibed lat t ice mesh in 
our  spat ia l  d iscre t iza t ion  procedure .  An  ex tended  p resen ta t ion  of  the work  
here repor ted ,  where this ques t ion  will be p rope r ly  addressed,  and  com- 
pr is ing a more  de ta i led  discussion of  our  results  in re la t ion  to bo th  the 
tu rbu len t  veloci ty field charac te r i za t ion  and  the d ispers ion  exper iments ,  
will be publ i shed  elsewhere. 
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